Part Number Hot Search : 
48S15 M6MGB PESD5V 47LF100 AD9868 74HC670N FJB3307D MDLS16
Product Description
Full Text Search
 

To Download RS5RM4036A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PWM STEP-UP DC/DC CONVERTER WITH VOLTAGE REGULATOR AND DETECTOR
RS5RM SERIES
APPLICATION MANUAL
NO.EA-018-0006
PWM STEP-UP DC/DC CONVERTER WITH VOLTAGE REGULATOR AND DETECTOR
RS5RM SERIES
OUTLINE
The RS5RM Series are step-up DC/DC converter ICs equipped with a voltage regulator (VR) and a voltage detector (VD) by CMOS process. Each of these step-up DC/DC converter ICs consists of a PWM DC/DC converter, a linear regulator and a voltage detector. These ICs are output-voltage-fixed type regulators which function as a linear regulator when input voltage is high, and as step-up DC/DC converter+linear regulator when input voltage is low, by using an inductor, a diode and a capacitor as external parts for the ICs. Since a voltage detector is built in these ICs, the potentials such as the output voltage of DC/DC converters can be monitored. In addition, these step-up DC/DC converter ICs are suitable for battery-powered and hand-held instruments because internal circuits can be turned off by the chip enable function so that the standby current can be minimized.
FEATURES
* Low Supply Current ..........................................TYP. 55A (RS5RM3624A : VIN=3.0V,at no load) * Standby Mode.....................................................Istandby=MAX. 1.0A (RS5RMxxxxA) Istandby=MAX. 10.0A (RS5RMxxxxB) .......................Operating Voltage VIN=1.2V to 10V * Low Voltage Operation Possible * High Output Voltage Accuracy .........................Fixed Output Voltage Accuracy2.5% * High Voltage Detection Accuracy .....................2.5% * Output Voltage can be set at User's request (refer to Selection Guide). * Voltage close to battery's voltage can be output because these ICs are of a step-up / step-down type (Ex. a fixed voltage of 3V can be output by a 3V battery). * Soft Start Function, built-in Protection Circuits for Lx Driver * Phase Compensation Circuits built in * Pin for External Driver is equipped, and a large current output can be obtained. * Small Packages ..................................................8pin SOP
APPLICATIONS
* Power source for cameras, camcorders, and hand-held audio equipment. * Power source for small OA apparatus such as note book personal computers,and word processors. * Power source for hand-held communication appliances such as pagers,cordless telephones, and cellular phones.
1
RS5RM
BLOCK DIAGRAM
OSC VSS 1 PWM VLX Limiter 8 LX
CE
2
- +
7 Soft Start Vref1
EXT
VDOUT
3
+ - - +
6 Vref2
VDD
VDIN
4
5
VOUT
SELECTION GUIDE
In the RS5RM Series, the output voltage, the detector threshold, the version symbols, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below: RS5RMx xxxx - xx Part Number a bc d
} }
}
Code
Contens
a
Setting Output Voltage (VOUT): Stepwise setting with a step of 0.1V in the range of 1.5V to 6.0V is possible. Setting Detector Threshold (-VDET): Stepwise setting with a step of 0.1V in the range of 1.2V to 5.0V is possible. Designation of Version Symbols: A: Operation of all the internal circuits is stopped by setting CE pin at VDD level. B: Operation of only Step-up DC/DC converter is stopped by setting CE pin atVDD level. Designation of Taping Type: Ex. 8pin SOP : T1, T2 (refer to Taping Specification) "T2" is prescribed as a standard.
b
c
d
For example, the product with Output Voltage 5.0V, Detector Threshold 4.5V, Version A, and Taping Type T1, is designated by Part Number RS5RM5045A-T1.
2
RS5RM
PIN CONFIGURATION
* 8pin SOP
1 2 3 4
8 7 6 5
PIN DESCRIPTION
Pin No. Symbol Pin Description
1 2 3 4 5 6 7 8
VSS CE VDOUT VDIN VOUT VDD EXT LX
Ground Pin Chip Enable Pin Voltage Detector Output Pin.Nch Open Drain Output Detection Input Pin of Voltage Detector Output Pin for Regulator Step-up Output Pin.Power Supply Pin External Transistor Drive Pin External Inductor Drive Pin.
3
RS5RM
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating
Topt=25C,Vss=0V
Unit
VDD VLX VEXT VOUT VDOUT VCE
Supply Voltage LX Pin Voltage Output Voltage EXT Pin Voltage VOUT Pin Voltage VDOUT Pin Voltage CE Pin Voltage Input Voltage VDIN Pin Voltage A Version B Version
- 0.3 to +12 Vss-0.3 to +12 Vss-0.3 to VDD+0.3 Vss-0.3 to VDD+0.3 Vss-0.3 to +12 Vss-0.3 to VDD+0.3 Vss-0.3 to VDD+0.3 Vss- 0.3 to +12 250 50 300 -30 to +80 -55 to +125 260C, 10s
V V V V V V V mA mA mW C C
VDIN ILX IEXT PD Topt Tstg Tsolder Power Dissipation
Inductor Drive Output Current
Lx Pin Current EXT Pin Current
Operating Temperature Range Storage Temperature Range Lead Temperature (Soldering)
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.
4
RS5RM
ELECTRICAL CHARACTERISTICS
* RS5RM3624A,B Symbol Item Conditions MIN. TYP. MAX. Unit
Topt=25C
Note
VIN VDD Voscst Vhold fosc Maxdty VOL1 IOH1 VLXlim VOH VOL2 VOUT VDIF
Operation Input Voltage Step-up Output Voltage Oscillator Start-up Voltage Hold-on Voltage Oscillator Frequency Oscillator Maximum Duty Cycle Lx Output Voltage Lx Leakage Current Lx Voltage Limit EXT Output Pch ON Voltage EXT Output Nch ON Voltage Output Voltage Dropout Voltage
No load No load No load IOUT=1mA
1.2 3.99 4.1 0.9 0.7 40 65 50 80
10 4.21 1.2
V V V V
60 90 0.5
kHz % V A V V
IOL=50mA 0.01 LX Pin On IEXT=-3mA,VDD=4.1V IEXT=5mA,VDD=4.1V IRL=-5mA IRL=-30mA -30mAIRL0mA 2.34 60 IOL=5mA 0.01 VDIN=VDD VDIN=Vss -0.5 VDD-0.3 0 CE=VDD CE=Vss VIN=3V, L=100H, -0.5 -0.5 2.4 120 3.51 3.6 0.3 3.6 0.9
10
0.5 3.69
V V V
VOUT/IOUT Load Regulation -VDET VHYS VOL3 IOH2 IVDINH IVDINL VCEH VCEL ICEH ICEL IDD Detector Threshold Detector Threshold Hysteresis VDOUT ON Voltage VDOUT Leakage Current VDIN "H" Input Current VDIN "L" Input Current CE "H" Input Voltage CE "L" Input Voltage CE "H" Input Current CE "L" Input Current Supply Current
100 2.46 240 0.5 5 5 0.5 VDD 0.2VDD 0.5 0.5
mV V mV V A A A V V A A
C=22F, CE=Vss, No load VIN=3V, L=100H,
55
120
A
1.0 10.0
A A
Note1 Note2
Istandby
Standby Current
C=22F, CE=VDD, No load
(Note 1) Standby current of Version A (Note 2) Standby current of Version B Please refer to Basic Circuit for Test Circuit.
5
RS5RM
* RS5RM5045A,B Symbol Item Conditions MIN. TYP. MAX. Unit
Topt=25C
Note
VIN VDD Voscst Vhold fosc Maxdty VOL1 IOH1 VLXlim VOH VOL2 VOUT VDIF
Operation Input Voltage Step-up Output Voltage Oscillator Start-up Voltage Hold-on Voltage Oscillator Frequency Oscillator Maximum Duty Cycle Lx Output Voltage Lx Leakage Current Lx Voltage Limit EXT Output Pch ON Voltage EXT Output Nch ON Voltage Output Voltage Dropout Voltage
No load No load No load IOUT=1mA
1.2 5.36 5.5 0.9 0.7 40 65 50 80
10 5.64 1.2
V V V V
60 90 0.5
kHz % V A V V
IOL=50mA 0.01 LX Pin On IEXT=-3mA,VDD=5.5V IEXT=5mA,VDD=5.5V IRL=-5mA IRL=-30mA -30mAIRL0mA 4.38 112 IOL=5mA 0.01 VDIN=VDD VDIN=Vss -0.5 VDD-0.3 0 CE=VDD CE=Vss VIN=4V, L=100H, -0.5 -0.5 4.5 225 4.87 5.0 0.3 5.0 0.9
10
0.5 5.13
V V V
VOUT/IOUT Load Regulation -VDET VHYS VOL3 IOH2 IVDINH IVDINL VCEH VCEL ICEH ICEL IDD Detector Threshold Detector Threshold Hysteresis VDOUT ON Voltage VDOUT Leakage Current VDIN "H" Input Current VDIN "L" Input Current CE "H" Input Voltage CE "L" Input Voltage CE "H" Input Current CE "L" Input Current Supply Current
100 4.62 450 0.5 5 5 0.5 VDD 0.2VDD 0.5 0.5
mV V mV V A A A V V A A
C=22F, CE=Vss, No load VIN=4V, L=100H,
70
150
A
1.0 10.0
A A
Note1 Note2
Istandby
Standby Current
C=22F, CE=VDD, No load
(Note 1) Standby current of Version A (Note 2) Standby current of Version B Please refer to Basic Circuit for Test Circuit.
6
RS5RM
OPERATION OF STEP-UP DC/DC CONVERTER
Step-up DC/DC Converter charges energy in the inductor when Lx Transistor (LxTr) is ON, and discharges the energy with the addition of the energy from Input Power Source thereto when LxTr is OFF, so that a higher output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams :
< Basic Circuits > i2 L VIN i1 LX Tr CL SD IOUT VOUT IL
< Current through L >
IL min
IL max topen t
ton T=1/ fosc
toff
Step.1: LxTr is turned ON and current IL (=i1 ) flows, so that energy is charged in L. At this moment, IL(=i1 ) is increased from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of LxTr. Step.2: When LxTr is turned OFF, Schottky diode (SD) is turned ON in order that L maintains IL at ILmax, so that current IL (=i2) is released. Step.3: IL (=i2) is gradually decreased, and in the case of discontinuous mode, IL reaches ILmin (=0) after a time period of topen, so that SD is turned OFF. In the case of a continuous mode,the time period (toff) runs out before IL reaches ILmin (=0), so that LxTr is turned ON in the next cycle, and SD is turned OFF. In this case, ILmin does not reach zero, and IL (=i1) increases from ILmin (>0). In the case of PWM control system, with the oscillator frequency (fosc) maintained constant, the output voltage is maintained constant by controlling the on-time period (ton).
(Note) Please refer to the Application Manual for "RH5RH SERIES" for details.
7
RS5RM
OPERATION
VIN 100H LX VDD
8
6 5 Pch Tr
VOUT
VOUT
OSC 100F LX Tr PWM
- + + -
22F Vref1 1 VSS Vref2
1F
FIG. A Diagram of RS5RM including external circuits 1. VDD Output Voltage VDD output voltage is shown in Fig. B. (1) In the case of VIN-VfVDD0: In Area B, LxTr is maintained in an OFF state, so that VIN-Vf (V) is output as it is from VDD pin without step-up operation. (2) In the case of VIN-VfOutput Voltage (V) Area A VDD0 Area B
: VDD Set Voltage : VOUT Set Voltage : ON Voltage of Diode
VDD
VOUT0 1.2V
VOUT VDD0+Vf 10V Input Voltage (V)
FIG. B Output Voltage vs. Input Voltage characteristic
8
RS5RM
TEST CIRCUITS
100H VSS CE VDOUT VDIN LX EXT VDD VOUT A 1F COUT V V 22F CVDD Oscilloscope 100F Note1 A IIN CIN VIN
Test Circuit 1
VSS CE Oscilloscope 100k VDOUT VDIN
LX EXT VDD VOUT
VSS CE VDOUT VDIN
LX EXT VDD VOUT VIN Oscilloscope
VIN
Test Circuit 2
Test Circuit 3
100H
IIN A + CIN VIN OPEN
VSS CE VOUT VDIN A VDOUT VDIN
LX EXT VDD VOUT
VSS CE VDOUT VDIN 33k
LX EXT VDD VOUT
100F
Digitizing Oscilloscope
5.5V
Pulse Generator A Digitizing Oscilloscope (for Trigger)
Test Circuit 5
Test Circuit 4
9
RS5RM
100H
IIN A + CIN VIN
VSS CE
LX EXT
1F
VDOUT VDD VDIN VOUT CVDD 22F + + COUT 1F
Digitizing Oscilloscope
100 A
Pulse Generator
Test Circuit 6
100H
220 VIN Pulse Generator 100 CIN 1F +
VSS CE
LX EXT Digitizing Oscilloscope + + COUT 1F
VDOUT VDD VDIN VOUT CVDD 22F
Test Circuit 7
VIN L D VOUT RS5RM EXT VDD VDD
Rb NPN Tr IIN A CIN
Cb
CE
VOUT VSS
Load CVDD COUT A IDD A IOUT
Test Circuit 8
L D CIN Rb : 47H(SUMIDA ELECTRIC CD105) : Schottky Diode (HITACHI HRP22) : 220F(Aluminum electrolytic Type) : 220 Cb CVDD COUT : 0.01F : 220F(Aluminum electroltic Type) : 1F(Tantalum Type)
10
RS5RM
By use of these test circuits,the typical characteristics were obtained as shown in the following pages: Test Circuit 1: Typical Characteristics 1) 2) 3) 4) 5) 9) 10) 13) 14) 16) (Typical Characteristics 13) and 14) were measured by replacing the capacitor shown in Note1 with a 1F Capacitor) Test Circuit 2: Test Circuit 3: Typical Characteristics 11) 12) Typical Characteristics 7) 8) Efficiency is shown by the following formula: =(VOUT x IOUT) / (VIN x IIN) Test Circuit 4: Test Circuit 5: Test Circuit 6: Test Circuit 7: Test Circuit 8: Typical Characteristics 6) Typical Characteristics 15) Typical Characteristics 17) Typical Characteristics 18) Typical Characteristics 19) 20)
In the present IC, input current at no load is defined as supply current.(CE=VSS). And when CE=VDD, the input current (no load) is defired as standby current.
11
RS5RM
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Input Voltage (Topt=25C) RS5RM5045A
5.5 Output Voltage VOUT(V) Output Voltage VOUT(V) 4.5
RS5RM4036A
5.0
4.0
4.5
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA
3.5
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA
4.0 0 2 4 6 8 Input Voltage VIN(V) 10
3.0 0 2 4 6 8 Input Voltage VIN(V) 10
RS5RM3624A
4.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 4.0
RS5RM3531A
3.5
3.5
3.0
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA
3.0
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA
2.5 0 2 4 6 8 Input Voltage VIN(V) 10
2.5 0 2 4 6 8 Input Voltage VIN(V) 10
RS5RM3329A
4.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.5
RS5RM3027A
3.5
3.0
3.0
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA 0 2 6 4 8 Input Voltage VIN(V) 10
2.5
IOUT=10mA IOUT=20mA IOUT=30mA IOUT=40mA
2.5
2.0 0 2 4 6 8 Input Voltage VIN(V) 10
12
RS5RM
2) Output Voltage vs. Output Current (Topt=25C) RS5RM5045A
5.5 Output Voltage VOUT(V) Output Voltage VOUT(V) 4.5
RS5RM4036A
5.0
4.0
VIN=5V 4.5 VIN=2V VIN=3V 4.0 0 50 100 Output Current IOUT(mA) 150 VIN=4V
VIN=4V 3.5 VIN=2V VIN=3V 3.0 0 50 100 Output Current IOUT(mA) 150
RS5RM3624A
4.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 4.0
RS5RM3531A
3.5
3.5
VIN=4V 3.0 VIN=2V VIN=3V 2.5 0
3.0
VIN=2V
VIN=3V
2.5 50 100 Output Current IOUT(mA) 150 0 80 20 40 60 Output Current IOUT(mA) 100
RS5RM3329A
4.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.5
RS5RM3027A
3.5
3.0
3.0
VIN=2V
VIN=3V
2.5
VIN=2V
VIN=3V
2.5 0 20 40 60 80 Output Current IOUT(mA) 100
2.0 0 80 20 40 60 Output Current IOUT(mA) 100
13
RS5RM
3) Ripple Voltage vs. Output Current (Topt=25C)
L=100H
RS5RM5045A COUT=22F
45 Ripple Voltage Vr (mVp-p) 40 35 30 25 20 15 10 VIN=1.2V 5 0 0 10 20 30 40 Output Current IOUT(mA) L=100H 50 3.0V 4.0V Ripple Voltage Vr (mVp-p) Tantalum 2.0V 45 40 35 30 25 20 15 10 5 0 0
L=47H
RS5RM5045A COUT=22F
Tantalum
4.0V 3.0V
2.0V
VIN=1.2V
10 20 30 40 Output Current IOUT(mA) L=220H
50
RS5RM5045A COUT=47F
45 Ripple Voltage Vr (mVp-p) 40 35 30 25 20 15 10 5 0 0 10 20 30 40 Output Current IOUT(mA) 50 VIN=1.2V 3.0V 2.0V 4.0V Tantalum 45 Ripple Voltage Vr (mVp-p) 40 35 30 25 20 15 10 5 0 0
RS5RM5045A COUT=22F
Tantalum
3.0V
4.0V 2.0V VIN=1.2V
20 40 60 Output Current IOUT(mA)
80
RS5RM5045A L=100H
45 Ripple Voltage Vr (mVp-p) 40 35 30 25 20 15 10 VIN=1.2V 5 0 0 10 20 30 40 Output Current IOUT(mA) 2.0V
COUT=100F Alminum electrolytic 3.0V
4.0V
50
14
RS5RM
4) Efficiency vs. Input Voltage (Topt=25C) RS5RM5045A
100 100
RS5RM4036A
80 Efficiency (%) Efficiency (%)
80
60
40
IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA
60
40
IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA
20 0 2 4 6 8 Input Voltage VIN(V) 10
20 0 2 4 6 8 Input Voltage VIN(V) 10
RS5RM3624A
100 100
RS5RM3531A
80 Efficiency (%) Efficiency (%)
80
60
40
IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA
60
40
IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA
20 0 2 4 6 8 Input Voltage VIN(V) 10
20 0 2 4 6 8 Input Voltage VIN(V) 10
RS5RM3329A
100 100
RS5RM3027A
80 Efficiency (%) Efficiency (%)
80
60 IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA
60 IOUT=40mA IOUT=30mA IOUT=20mA IOUT=10mA 0 2 4 6 8 Input Voltage VIN(V) 10
40
40
20 0 2 4 6 8 Input Voltage VIN(V) 10
20
15
RS5RM
5) Efficiency vs. Output Current (Topt=25C) RS5RM5045A
100 90 VIN=5V Efficiency (%) 80 70 VIN=3V 60 VIN=2V 50 40 30 0 20 40 60 80 Output Current IOUT(mA) 100 Efficiency (%) VIN=4V 80 70 60 50 40 30 0 20 40 60 80 Output Current IOUT(mA) 100 VIN=2V VIN=3V VIN=4V 100 90
RS5RM4036A
RS5RM3624A
100 90 Efficiency (%) Efficiency (%) 80 70 60 VIN=3V 50 VIN=2V 40 30 0 20 40 60 80 Output Current IOUT(mA) 100 40 30 0 VIN=4V 100 90 80 70 60 50
RS5RM3531A
VIN=2V
VIN=3V
20 40 60 80 Output Current IOUT(mA)
100
RS5RM3329A
100 90 Efficiency (%) Efficiency (%) 80 70 60 50 VIN=2V 40 30 0 20 40 60 80 Output Current IOUT(mA) 100 40 30 0 VIN=3V 100 90 80 70 60 50
RS5RM3027A
VIN=2V
VIN=3V
20 40 60 80 Output Current IOUT(mA)
100
16
RS5RM
6) Soft Start Time vs. Input Voltage (Topt=25C) RS5RM5045B
60 50 40 30 20 10 0 1 2 3 4 5 Input Voltage VIN(V) 6 40mA 10mA IOUT=1mA CVDD=22F COUT=1F
RS5RM5045B CVDD=22F
60 50 40 30 20 10 IOUT=1mA 0 1 2 3 4 5 Input Voltage VIN(V) 6 10mA 40mA COUT=47F
Soft Start Time Ts(ms)
RS5RM5045B
60 50 40 30 20 10 IOUT=1mA 0 1 2 3 4 5 6 10mA 40mA CVDD=22F COUT=100F
7) Oscillator Frequency vs. Temperature RS5RM3624A
100 Oscillator Frequency FOSC (kHz) 80 60 40 20 10 -40 -20
Soft Start Time Ts(ms)
Soft Start Time Ts(ms)
0 20 40 60 80 100 Temperature Topt (C)
8) Oscillator Maximum Duty Cycle vs.Temperature
Oscillator Maximum Duty Cycle Maxdty (%)
9) Output Voltage (VDD) vs.Temperature RS5RM3624A
4.3 Output Voltage VDD (V)
RS5RM3624A
100
80
4.1
60
3.9
40 -40 -20
0 20 40 60 80 Temperature Topt (C)
100
3.7 -40 -20
0 20 40 60 80 100 Temperature Topt (C)
17
RS5RM
10) Output Voltage vs. Temperature RS5RM3624A
3.8
11) Detector Threshold vs. Temperature RS5RM3624A
2.6 Detectoh Threshold VDET(V)
Output Voltage VOUT (V)
3.6
2.4
3.4
2.2
3.2 -40 -20
0 20 40 60 80 Temperature Topt (C)
100
2.0 -40 -20
0 20 40 60 80 100 Temperature Topt (C)
12) VD Output Voltage vs. VD Input Voltage RS5RM3624A
5 VD Output Voltage VDOUT(V) 4 3 2 1 0 0 1 2 3 4 VD Input Voltage VDIN(V) VDIN Pull-Up Resistor:100k
13) Supply Current vs. Input Voltage RS5RM xxxxA
300 Supply Current IDD(A)
200
100
5045 4036 3624 3531 3329 3027
5
0 0
2
4 6 10 8 Input Voltage VIN(V)
12
14) Standby Current vs.Temperature RS5RM3624x
3 Standby Current Istandby (A)
15) VD Input Current vs. VD Input Voltage RS5RM5045A
1.0 VD Input Current IVDIN(A) 0.8 0.6 0.4 0.2 0.0 0 VDD=5.5V
2
B version
1
A version 0 -40 -20 0 20 40 60 80 100 Temperature Topt (C)
5 1 2 3 4 VD Input Voltage VDIN(V)
6
18
RS5RM
16) Start-up/Hold-on Voltage vs. Output Current RS5RM5045A
Start-up/Hold-on Voltage Vstart/Vhold(V) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Vhold 0.2 0 0 10 5 15 Output Current IOUT (mA) 20 Vstart
19
RS5RM
17) Load Transient Response RS5RM5045A
6 Output Voltage VOUT (V) 5 Output Voltage 4 3 2 Output Current 1 1mA 0 -2 0 2 4 Time t (ms) 6 8 10 0 12 30 120 90 60 VIN=3.0V COUT=1F 180 150 Output Current IOUT (mA) Output Current IOUT (mA) Output Current IOUT (mA)
RS5RM5045A
6 Outout Voltage VOUT (V) 5 4 3 2 1 0 -2 0 2 Output Current 30 1mA 4 Time t(ms) 6 8 10 0 12 Output Voltage VIN=5.0V COUT=1F 180 150 120 90 60
RS5RM5045A
6 Output Voltage VOUT (V) 5 4 3 2 Output Current 1 Output Voltage
VIN=3.0V COUT=47F
180 150 120 90 60 30
1mA 0 -2 0 2 4 6 8 Time t (ms) 10 12 14 16
0 18
20
RS5RM
RS5RM5045A
6 Output Voltage VOUT (V) 5 Output Voltage 4 3 2 Output Current 1 0 -2 1mA 0 2 4 6 8 Time t (ms) 10 12 14 16 30 0 18 120 90 60 VIN=5.0V COUT=47F 180 150 Output Current IOUT (mA) Output Current IOUT (mA) Output Current IOUT (mA)
RS5RM5045A
6 Output Voltage VOUT (V) 5 Output Voltage 4 3 2 1 0 -2 0 2 Output Current 30 1mA 4 6 8 Time t (ms) 10 12 14 16 18 120 90 60 VIN=3.0V COUT=100F 180 150
RS5RM5045A
6 Output Voltage VOUT (V) 5 Output Voltage 4 3 2 Output Current 1 0 -2
VIN=5.0V COUT=100F
180 150 120 90 60 30
1mA 0 2 4 6 8 Time t (ms) 10 12 14 16 18
21
RS5RM
18) Line Transient Response RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=1mA COUT=1F 14 12 Output Voltage 10 8 Input Voltage 6 4 12 Input Voltage VIN (V) Input Voltage VIN (V) Input Voltage VIN (V)
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=1mA COUT=1F 14 12 Output Voltage 10 Input Voltage 8 6 4 12
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2
IOUT=30mA COUT=1F
14 12
Output Voltage VOUT (V)
Output Voltage 10 8 Input Voltage 6 4 12
0
2
4 Time t (ms)
6
8
10
22
RS5RM
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=30mA COUT=1F 14 12 Output Voltage 10 Input Voltage 8 6 4 12 Input Voltage VIN (V) Input Voltage VIN (V) Input Voltage VIN (V)
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=1mA COUT=47F 14 12 Output Voltage 10 8 Input Voltage 6 4 12
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2
IOUT=1mA COUT=47F
14 12
Output Voltage VOUT (V)
Output Voltage 10 Input Voltage 8 6 4 12
0
2
4 Time t (ms)
6
8
10
23
RS5RM
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=30mA COUT=47F 14 12 Output Voltage 10 8 Input Voltage 6 4 12 Input Voltage VIN (V) Input Voltage VIN (V) Input Voltage VIN (V)
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=30mA COUT=47F 14 12 Output Voltage 10 Input Voltage 8 6 4 12
Output Voltage VOUT (V)
0
2
4 Time t (ms)
6
8
10
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2
IOUT=1mA COUT=100F
14 12
Output Voltage VOUT (V)
Output Voltage 10 8 Input Voltage 6 4 14
0
2
4
6 Time t (ms)
8
10
12
24
RS5RM
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=1mA COUT=100F 14 12 Output Voltage 10 8 Input Voltage 6 4 14 Input Voltage VIN (V) Input Voltage VIN (V) Input Voltage VIN (V)
Output Voltage VOUT (V)
0
2
4
6 Time t (ms)
8
10
12
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2 IOUT=30mA COUT=100F 14 12 Output Voltage 10 8 Input Voltage 6 4 14
Output Voltage VOUT (V)
0
2
4
6 Time t (ms)
8
10
12
RS5RM5045A
5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -2
IOUT=30mA COUT=100F
14 12
Output Voltage VOUT (V)
Output Voltage 10 Input Voltage 8 6 4 14
0
2
4
6 Time t (ms)
8
10
12
25
RS5RM
19) Output Voltage vs. VDD Output Currrent RS5RM5045A IOUT=20mA
5.6 5.5 Output Voltage VOUT/VDD(V) 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 0 VIN=1.2V 100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA) 2.0V VOUT 3.0V 4.0V VDD Output Voltage VOUT/VDD(V)
RS5RM5045A
5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 0 VIN=1.2V 2.0V VOUT 3.0V VDD
IOUT=40mA
4.0V
100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA)
RS5RM5045A
5.6 VDD 5.5 Output Voltage VOUT/VDD(V) 5.4 5.3
IOUT=60mA
20)Output Current Efficiency vs.VDD Output Current RS5RM5045A
100 90 80 Efficiency (%)
IOUT=20mA
5.2 5.1 4.9 4.8 4.7 4.6 0
2.0V VIN=1.2V 3.0V
4.0V
70 60 50 40 30 20 10
4.0V 3.0V 2.0V VIN=1.2V
5.0 VOUT
100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA)
0 0 100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA)
RS5RM5045A
100 90 80 Efficiency (%) Efficiency (%) 70 60 50 30 20 10 0 0 100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA) 2.0V 40 VIN=1.2V 3.0V 4.0V IOUT=40mA 100 90 80 70 60 50 40 30 20 10 0 0
RS5RM5045A
IOUT=60mA
4.0V 3.0V 2.0V VIN=1.2V
100 200 300 400 500 600 700 VDD Output Current IDDOUT (mA)
(NOTE) Efficiency at Typical Characteristics 20) is shown by the following formula:
(VDDxIDDOUT)+(VOUTxIOUT) = VINxIIN
x100
26
RS5RM
BASIC CIRCUIT
VIN
Inductor Vss
Lx
CE VDD VDOUT
EXT
Diode
VDD
+ Capacitor
VDIN
VOUT
Examples of Parts : Inductor Diode
: RCR-664D (100H) ; Sumida Electric Co., Ltd. : MA721 (Schottky type) ; Matsushita Electronics Corporation
Capacitor : 22F (Tantalum type)
27
RS5RM
TYPICAL APPLICATIONS
* Current Boost Circuit 1 VIN L D Rbe Cbe Rb NPN Tr RS5RM VOUT PNP Tr
EXT
VDD CVDD
CIN
Cb
CE
VOUT Vss
COUT
Examples of Components
L D CIN CvDD COUT
:47H(SUMIDA ELECTRIC CD105) :Schottky Diode (HITACHI HRP22) :220F(Aluminum electrolytic Type) :100F(Tantalum type)/ 220F(Aluminum electroltic Type) :47F(Tantalum Type)
CD Cbe
:0.01F :0.1F(RS5RM5045x,RS5RM4036x,RS5RM3624x) 100PF(RS5RM3531x,RS5RM3329x,RS5RM3027x)
NPN Tr :2SD1628 PNP Tr :2SA1213 Rb Rbe :220 :12
* Current Boost Circuit 2 (High Efficiiency Circuit) VIN L D Rbe Rb1 NPN Tr VDD CVDD VDD Rb2 PNP Tr VOUT
EXT
CIN
RS5RM 5045x Cb CE
EXT
Vss
VOUT CE RN5RG 50A GND
COUT
(NOTE) High efficiency current boost circuit,using RS5RM5045xwith RN5RG50A(RICOH Voltage Regulator).
Examples of Components
L D CIN CVDD COUT
:47H(SUMIDA ELECTRIC CD105) :Schottky Diode (HITACHI HRP22) :220F(Aluminum electrolytic Type) :33F(Tantalum type)/ 220F(Aluminum electroltic Type) :47F(Tantalum Type)
CD :0.01F NPN Tr :2SD1628 PNP Tr :2SA1213 Rb1 :220 Rb2 Rbe :330 :10k
28
RS5RM
APPLICATION HINTS
When using these ICs, be sure to take care of the following points: * Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, when an external component is connected to VOUT Pin, make minimum connection with the capacitor.
* Make sufficient grounding. A large current flows through VSS Pin by switching. When the impedance of the
VSS connection is high, the potential within the IC is varied by the switching current. This may result in unstable operation of the IC.
* Use capacitor with a capacity of 10F or more, and with good high frequency characteristics such as tantalum
capacitor. We recommend the use of a capacitor with an allowable voltage which is at least three times the output set voltage. This is because there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned OFF.
* Take the utmost care when choosing a inductor. Namely, choose such an inductor that has sufficiently small
d.c. resistance and large allowable current, and hardly reaches magnetic saturation. When the inductance value of the inductor is small, there may be the case where ILX exceeds the absolute maximum ratings at the maximum load. Use an inductor with an appropriate inductance.
* Use a diode of a Schottky type with high switching speed, and also take care of the rated current.
The performance of power source circuits using these ICs largely depends upon the peripheral components. Take the utmost care in the selection of the peripheral components. In particular, design the peripheral circuits in such a manner that the values such as voltage, current and power of each component, PCB patterns and the IC do not exceed their respective rated values.
29


▲Up To Search▲   

 
Price & Availability of RS5RM4036A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X